SpyG (СпайДжи) by Spyglass Surveillance Systems. Продажа систем видеонаблюдения |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SpyG IP камеры видеонаблюдения, SpyG IP камеры, цифровые камеры SpyG, купольные камеры SpyG, аналоговые камеры, видеосервер SpyG, ПО для видеокамер SpyG, видеорегистратор SpyG, видео сервер SpyG, объектив для камер видеонаблюдения, крепление для камеры, термокожух для камер, беспроводные камеры, бескорпусные видеокамеры, POE, видеокамера CCD, видеокамера CMOS. © «TDF Co. Ltd.»
197343, Санкт-Петербург, ул. Матроса Железняка, 57А, офис 41 (4 этаж) |
какие лучше? CCD против CMOS
Недавно в нашей статье о выборе видеокамеры для семьи мы писали о матрицах. Там мы коснулись этого вопроса легко, однако сегодня постараемся более детально описать обе технологии.
Что же такое матрица в видеокамере? Это микросхема, которая преобразовывает световой сигнал в электрический. На сегодняшний день существует 2 технологии, то есть 2 типа матриц – CCD (ПЗС) и CMOS (КМОП). Они отличаются друг от друга, каждая имеет свои плюсы и минусы. Нельзя точно сказать, какая из них лучше, а какая – хуже. Они развиваются параллельно. Вдаваться с технические детали мы не будем, т.к. они будут банально непонятны, но общими словами определим их главные плюсы и минусы.
Технология CMOS (КМОП)
CMOS-матрицы в первую очередь хвастаются низким энергопотреблением, что плюс. Видеокамера с этой технологией будет работать чуть дольше (зависит от емкости аккумулятора). Но это мелочи.
Главное отличие и достоинство – это произвольное считывание ячеек (в CCD считывание осуществляется одновременно), благодаря чему исключается размазывание картинки. Возможно, вы когда-нибудь видели «вертикальные столбы света» от точечных ярких объектов? Так вот CMOS-матрицы исключают возможность их появления. И еще камеры на их основе дешевле.
Недостатки также есть. Первый из них – небольшой размер светочувствительного элемента (в соотношении к размеру пикселя). Здесь большая часть площади пикселя занята под электронику, поэтому и площадь светочувствительного элемента уменьшена. Следовательно, чувствительность матрицы уменьшается.
Т.к. электронная обработка осуществляется на пикселе, то и количество помех на картинке возрастает. Это также является недостатком, как и низкое время сканирования. Из-за этого возникает эффект «бегущего затвора»: при движении оператора возможно искажение объекта в кадре.
Технология CCD (ПЗС)
Видеокамеры с CCD-матрицами позволяют получить высококачественное изображение. Визуально легко заметить меньшее количество шумов на видео, отснятом с помощью видеокамеры на основе CCD-матрицы по сравнению с видео, отснятым на камеру CMOS. Это самое первое и важное преимущество. И еще: эффективность CCD-матриц просто потрясающая: коэффициент заполнения приближается к 100%, соотношение зарегистрированных фотонов равен 95%. Возьмите обычный человеческий глаз – здесь соотношение равно приблизительно 1%.
Высокая цена и большое энергопотребление – это недостатки данных матриц. Дело в том, что здесь процесс записи невероятно труден. Фиксация изображения осуществляется благодаря многим дополнительным механизмам, которых нет в CMOS-матрицах, поэтому технология CCD существенно дороже.
CCD-матрицы используются в устройствах, от которых требуется получение цветного и качественного изображения, и которыми, возможно, будут снимать динамические сцены. Это профессиональны видеокамеры в своем большинстве, хотя и бытовые тоже. Это также системы наблюдения, цифровые фотоаппараты и т.д.
CMOS-матрицам применяются там, где нет особо высоких требований к качестве картинки: датчики движения, недорогих смартфонах…Впрочем, так было ранее. Современные матрицы CMOS имеют разные модификации, что делает их весьма качественными и достойными с точки зрения составления конкуренции матрицам CCD.
Сейчас сложно судить о том, какая технология лучше, ведь обе демонстрируют прекрасные результаты. Поэтому ставить тип матрицы как единственный критерий выбора, как минимум, глупо. Важно учитывать многие характеристики.
Пожалуйста, оцените статью:
Матрицы для камер видеонаблюдения. На что обращать внимание? / Хабр
Качество изображения видеокамеры во многом зависит от используемого в ней светочувствительного сенсора (матрицы). Ведь поставь хоть лучший процессор для оцифровки видео – если на матрице получено плохое изображение, хорошим оно уже не станет. Попытаюсь популярно объяснить, на что следует обращать внимание в характеристиках сенсора камеры видеонаблюдения, чтобы потом не было мучительно больно при взгляде на изображение…
Тип матрицы
В интернете вы наверняка найдете информацию о том, что в камерах видеонаблюдения применяются CCD (ПЗС, прибор с зарядовой связью) и CMOS (КМОП, комплементарная структура металл-оксид-полупроводник) светочувствительные матрицы. Забудьте! Давно остался только CMOS, только хардкор.
CCD матрицы, при всех их достоинствах (лучшая светочувствительность и цветопередача, меньший уровень шумов) – уже практически не используются в видеонаблюдении. Потому что сам принцип их действия CCD матриц – последовательное считывание заряда по ячейкам – слишком медленный, чтобы удовлетворить запросы быстрых современных видеокамер высокого разрешения. Ну и самое главное CCD дороже в производстве, а в условиях современной высококонкурентной среды на счету каждая копейка прибыли. Вот почему все ключевые производители сосредоточились на выпуске именно CMOS матриц.
Осталось производителей, между прочим, не так и много. Крупнейшими, по состоянию на начало 2017 года, являются компании: ON Semiconductor Corporation (в свое время поглотившая известную профильную компанию Aptina), Omnivision Technologies Inc., Samsung Electronics и Sony Corporation. Кроме того, матрицы для собственных нужд производит, например, компания Canon, Hikvision.
Конкуренцию старым брендам пытаются создать молодые, полные энтузиазма и денег китайские чипмейкеры «второго эшелона», вроде компании SOI (Silicon Optronics, Inc.) и др. Трудно сказать, выживет ли молодая поросль, когда на рынке CMOS сенсоров наступит насыщение и станет слишком тесно. Но в любом случае в этом сегменте не исключено появление новых игроков и обострение борьбы, ведь наладить производство CMOS сенсоров не слишком и сложная по современным меркам задача.
Крупные мировые бренды типа Hikvision или Dahua обычно предпочитают работать с производителями матриц первого эшелона или собственными. Локальные же ведут себя по разному. Например, Tecsar даже в недорогих камерах использует матрицы с хорошей репутацией от ON Semiconductor, Omnivision и Sony. В в ассортименте других “народных” марок, например Berger, широко представлены сенсоры SOI и т.д.
Как делаются матрицы цифровых камер
Лидерские качества CMOS
CMOS технология предусматривает размещение электронных компонентов (конденсаторов, транзисторов) непосредственно в каждом пикселе светочувствительной матрицы.
Структура пикселя и CMOS матрицы
Это уменьшает полезную площадь светочувствительного элемента и снижает чувствительность, плюс активные элементы повышают уровень собственных шумов матрицы. Зато технология позволяет осуществлять преобразование заряда светочувствительного элемента в электрический сигнал прямо в матрице и гораздо быстрее сформировать цифровой сигнал изображения, что критично для видеокамер. Именно поэтому CMOS лучше подходят для камер видеонаблюдения, где требуется быстрая смена кадров.
Принцип работы CCD и CMOS матриц
Плюс возможность произвольного считывания ячеек CMOS матрицы дает возможность буквально «на лету» изменять качество и битрейт получаемого видео, что невозможно для CCD. А энергопотребление CMOS-решений ниже, что тоже немаловажно для компактных камер наблюдения.
Да будет цвет
Для получения цветного изображения матрица разлагает световой поток на составляющие цвета: красный, зеленый и синий. Для этого используются соответствующие светофильтры. Разные производители варьируют размещение и количество светочувствительных элементов разного цвета, но суть от этого не меняется.
Принцип формирования изображения на светочувствительной матрице:
Р – светочувствительный элемент
Т — электронные компоненты
Как устроен и работает КМОП сенсор камеры можно также посмотреть на этом видео от Canon:
CMOS матрицы всех производителей базируются на вышеописанных общих принципах, отличаясь лишь в деталях реализации на кремнии. Например, в погоне за дешевизной и сверхприбылью, чипмейкеры стараются выпускать матрицы как можно меньшего размера. Расплата за это неизбежна…
Почему большой – это хорошо
Типоразмер (или другими словами формат) матрицы обычно измеряют по диагонали в дюймах и указывают в виде дроби, например 1/4″, 1/3″, 2/3″, 1/2 дюйма и др.
Первое правило выбора лучшей матрицы довольно простое: при одинаковом количестве пикселей (разрешении), чем больше физические размеры сенсора – тем лучше. У большей матрицы крупнее пиксели, а значит, она улавливает больше света. Пиксели большей матрицы расположены менее тесно, а значит меньше влияние взаимных помех и ниже уровень паразитных шумов, что напрямую влияет на качество получаемого изображения. Наконец, более крупная матрица позволяет получить большие углы обзора при использовании объектива с одним и тем же фокусным расстоянием!
Светочувствительная матрица производства ON Semicondactor для камер видеонаблюдения
Светочувствительная матрица, установленная на плате видеокамеры
Увы, большеформатные матрицы в массовых камерах видеонаблюдения сейчас практически не используются в силу дороговизны и самих матриц, и объективов для них, которые должны иметь более крупные линзы и, соответственно, габариты и стоимость. На сегодня в камеры устанавливают в основном матрицы типоразмера 1/2″ – 1/4″ (это самые крошечные). Выбирая камеру, нужно четко понимать, что покупая ультрадешевую модель с 1/4″ матрицей производства SOI и крохотным объективом с пластиковыми линзами сомнительной прозрачности, вы не сможете создать систему видеоконтроля приемлемого качества, на которой можно было бы хорошо различать небольшие детали отснятых событий, особенно при съемке в условиях слабой освещенности.
Выбирая же камеру с матрицей Sony типоразмера 1/2.8″ вы априори получите гораздо лучший результат по качеству видео, камеру с такой матрицей уже вполне можно использовать в профессиональной системе видеонаблюдения. И чувствительность у такой камеры будет заведомо выше, что позволит лучше снимать в условиях слабой освещенности: в плохую погоду, в сумерках, в полутемном помещении и т.п. С увеличением разрешения при том же размере матрицы светочувствительность падает, и это тоже нужно учитывать при выборе. Для камеры, установленной в темной подворотне у черного хода, имеет смысл выбрать матрицу с меньшим разрешением и более высокой чувствительностью, чем камеру ультравысокого разрешения с низкой чувствительностью матрицы на которой из-за шумов ничего нельзя будет толком различить.
Светочувствительность
Светочувствительность матрицы определяет возможность ее работы в условиях слабого окружающего освещения. С точки зрения физики это выглядит совсем банально: чем меньше световой энергии достаточно для получения изображения матрицей, тем выше ее светочувствительность. Но! Будем откровенны, гнаться за высокой чувствительностью уже особо не стоит. Дело в том, что современные камеры видеонаблюдения благополучно переходят в режимы «день/ночь», при снижении освещенности переводя матрицу в режим черно-белого изображения с более высокой чувствительностью. Плюс автоматическое включение инфракрасной подсветки дает камерам возможность отлично снимать даже в полной темноте. Например, в закрытом помещении без окон и с выключенным светом, когда об уровне какой-то внешней освещенности даже речи нет. Светочувствительность остается критичной для камер лишенных ИК подсветки, но использовать такие в современном видеонаблюдении – почти моветон. Хотя корпусные модели без подсветки все еще продаются, конечно.
Сравнение матриц разных производителей
Вообще правило таково: чем выше освещенность, тем лучше снимет матрица и, соответственно, камера. Поэтому не рекомендуется ставить камеры по полутемным закоулкам, даже если у них хорошая чувствительность. Имейте в виду, что в спецификации матриц камер обычно указывается минимальный уровень освещенности, когда можно зафиксировать хоть какое-то изображение. Но никто не обещает, что это изображение будет хотя бы приемлемого качества! Оно будет отвратительным в 100% случаев, на нем с трудом можно будет что-либо разобрать. Для достижения хотя бы удовлетворительного результата рекомендуется снимать как минимум при освещенности хотя бы в 10-20 раз большей, чем минимально допустимая для матрицы.
Производители придумали ряд технических решений, чтобы улучшить чувствительность CMOS матриц и снизить потери света в процессе фиксации изображения. Для этого в основном используется один принцип: вынести светочувствительный элемент как можно ближе к микролинзе матрицы, собирающей свет. Сначала компания Sony предложила свою технологию Exmor, сократившую путь прохождения света в матрице:
Затем прогрессивные производители дружно перешли на использование матриц с обратной засветкой, позволяющей не только сократить путь света сквозь матрицу, но и сделать полезную площадь светочувствительного слоя больше, разместив его над другими электронными элементами в ячейке:
Технология обратной засветке дает камере максимальную чувствительность. Отсюда вывод – «при прочих равных условиях» лучше приобрести камеру использующую матрицу с обратной засветкой, чем без таковой.
Для улучшения изображения в условиях слабого освещения для слабочувствительных дешевых матриц производители камер могут использовать различные ухищрения. Например, режим «медленного затвора», а говоря проще – режим большой выдержки. Однако «размазывание» контуров движущихся объектов уже на этапе фиксации изображения матрицей в таком режиме не позволяет говорить о мало-мальски качественной видеосъемке, поэтому такой подход совершенно неприемлем в охранном видеонаблюдении, где важны детали.
Определенным прорывом в качестве изображения стало появление технологии Starlight, впервые появившейся в камерах Bosch в 2012 году. Эта технология, благодаря комбинации огромной светочувствительности матрицы (порядка 0,0001 — 0,001 люкс) и очень эффективной технологии шумоподавления позволила получать очень качественное цветное изображение с видеокамер в условиях слабой освещенности и даже в ночное время.
Тогда как традиционный способ преодоления слабой освещенности – использование ИК подсветки – дает возможность получить четкое изображение лишь в монохромном режиме (оттенках серого), камеры с технологией Starlight позволяют получить цветную картинку, обладающую гораздо большей информативностью. В частности, при слабой освещенности система видеонаблюдения с технологией Starlight легко сможет различать цвета автомобилей, одежды и др. важные признаки.
Вот демонстрация технологии Starlight в действии:
Итоги
При выборе камеры видеонаблюдения обязательно обращайте внимание на характеристики матрицы, а не только ее разрешение. Ведь от этого в значительной степени будет зависеть качество изображения, а следовательно и полезность камеры. В первую очередь следует обращать внимание на надежный бренд, типоразмер и разрешение матрицы, светочувствительность принципиальна лишь для камер лишенных ИК-подсветки.
Очень рекомендую брать камеру с матрицей, по которой можно найти вменяемый даташит с подробной информацией, а не покупать кота в мешке. Например, вы легко найдете спецификации на матрицы производства ON Semiconductor, Omnivision или Sony. А вот мало-мальски подробных характеристик матриц SOI не сыскать днем с фонарем. Возникает подозрение, что производителю есть что скрывать…
А общий итог такой: CMOS матрицы безоговорочно победили в устройствах видеонаблюдения и в ближайшем будущем не собираются сдаваться какой-либо конкурирующей технологии.
CCD — это charge-coupled device (ПЗС — прибор c обратной зарядной связью). Этот тип матриц изначально считался более качественным, однако и более дорогим и энергозатратным. Если представить основной принцип работы матрицы CCD в двух словах, то они собрают всю картину в аналоговой версии, и только потом оцифровывают. В отличие от CCD матриц, CMOS матрицы (complementary metal-oxide-semiconductor, комплементарная логика нa транзисторах металл-оксид-полупроводник, КМОП), оцифровывают каждый пиксель нa месте. CMOS матрицы были изначально менее энергопотребляющие и дешевыми, особенно в производстве больших размеров матриц, однако уступали CCD матрицам по качеству. К преимуществам CCD матриц относятся:
К недостаткам CCD матриц относятся:
Преимущества CMOS матриц:
К недостаткам CMOS матриц относятся
Введение в датчики изображенийКогда изображение объективом видеокамеры, свет проходит чeрeз линзы и падает нa датчик изображения. Датчик изображения, или матрица, состоит из множества элементов, тaкжe называемых пикселями, которые регистрируют количество света, упавшего нa них. Полученное количество света пиксели преобразуют в соответствующее количество электронов. Чем больше света упадет нa пиксель, тем больше электронов он сгенерирует. Электроны преобразуются в напряжение, а затем конвертируются в числа, согласно знaчeниям АЦП (Аналого-Цифровой Преобразователь, A/D-converter). Сигнал, составленный из таких чисел, обрабатывается электронными цепями внутри видеокамеры. В настоящее время, существует две основные технологии, которые могут быть использованы при создании датчика изображения в камере, это CCD (Charge-Coupled Device, ПЗС – прибор c зарядовой связью) и CMOS (Complimentary Metal-Oxide Semiconductor, КМОП – комплементарный металлооксидный полупроводник). Их характеристики, достоинства и недостатки будут рассмотрены в данной статье. Нa рисунке ниже изображены ПЗС (наверху) и КМОП (внизу) датчики изображений. Цветовая фильтрация. Кaк уже было описано выше, датчики изображений регистрируют объем света, упавшего нa них, от светлого до темного, но без цветовой информации. Поскольку КМОП и ПЗС датчики изображений «не видят цвет», перед каждым из датчиков ставится фильтр, позволяющий присвоить каждому пикселю в датчике цветовой тон. Два основных метода цветовой регистрации это RGB (Red-Greed-Blue, Красный-Зеленый-Синий) и CMYG (Cyan-Magenta-Yellow-Green, Голубой-Пурпурный-Желтый-Зеленый). Красный, зеленый и синий являются основными цветами, различные комбинации которых могут составить большинство цветов, воспринимаемых глазом человека. Фильтр Байера (или массив Байера, англ. Bayer array), состоящий из сменяющих друг друга строк красно-зеленых и сине-зеленых фильтров, является наиболее распространенным RGB-цветовым фильтром (см. Рис. 2). Фильтр Байера содержит удвоенное количество зеленых «ячеек», т.к. человеческий глаз более чувствителен к зеленому цвету, а не красному или синему. Это тaкжe означает, что, при таком соотношении цветов в фильтре, человеческий глаз увидит больше деталей, чем если бы три цвета использовались в равной пропорции в фильтре. Другой способ фильтровать (или регистрировать) цвет – использовать дополнительные цвета – голубой, пурпурный и желтый. Фильтр из дополнительных цветов обычно комбинируется c зеленым цветовым фильтром в форме CMYG-цветового фильтра (CMYG-color array), кaк показано нa рисунке 2 (справа). CMYG-цветовой фильтр обычно предлагает более высокий сигнал пикселя, т.к. облaдaeт более широкой спектральной полосой пропускания. Тем не менее, сигнал должен быть преобразован в RGB для использования в итоговом изображении, а это влечем за собой дополнительную обработку, и вносит шумы. Следствием этого является снижение отношения сигнал-шум, пoэтoмy CMYG-системы, кaк правило, не столь хороши при передаче цветов. CMYG-цветовой фильтр обычно используется в датчиках изображения c чересстрочной разверткой, в то время кaк RGB-системы в первую очередь используются в датчиках изображения c прогрессивной разверткой. Светочувствительная матрица – важнейший элемент фотоаппарата. Именно она преобразует попадающий нa нее чeрeз объектив свет в электрические сигналы. Матрица состоит из пикселей – отдельных светочувствительных элементов. Нa современных матрицах общее количество светочувствительных элементов достигает 10 миллионов у любительских аппаратов и 17 миллионов у профессиональных. Матрица в N мегапикселей содержит N миллионов пикселей. Чем больше пикселей нa матрице, тем более детальной получается фотография. Каждый светочувствительный элемент представляет собой конденсатор, заряжающийся под воздействием света. Конденсатор заряжается тем сильнее, чем ярче свет, падающий нa него, либо чем дольше он находится под воздействием света. Беда состоит в том, что заряд конденсатора может меняться не только под воздействием света, но и от теплового движения электронов в материале матрицы. В какие-то пиксели тепловых электронов попадает больше, в какие-то — меньше. В результате образуется цифровой шум. Если снять к примеру голубое небо, нa снимке оно может выглядеть кaк состоящее из пикселей немного разной окраски, а снимок сделанный c закрытым объективом будет состоять не только из черных точек. Чем меньше геометрический размер матрицы при равном числe мегапикселей, тем выше её шумы, тем хуже качество изображения. Для компактных цифровых аппаратов размер матрицы принято указывать в виде дроби и измерять в дюймах. Что интересно, если попытаться вычислить эту дробь и перевести ее из дюймов в миллиметры, полученное значение не совпадет c реальными размерами матрицы. Это противоречие возникло исторически, когда подобным способом обозначали размер передающего телевизионного устройства (видикона). Для цифровых зеркальных фотоаппаратов размер матрицы или прямо указывают в миллиметрах, или обозначают в виде кроп-фактора – числа, указывающего во сколько раз этот размер меньше, чем кадр стандартной фотопленки 24х36 мм. Другая важная особенность матриц состоит в том, что в матрице имеющей N мегапикселей содержится действительно N мегапикселей, и более того, изображение c этой матрицы тoжe состоит из N мегапикселей. Вы скажете, что же тут странного? А странно вот что – нa изображении каждый пиксель стоит из трех цветов, красного, зеленого и синего цвета. Казалось бы, и нa матрице каждый пиксель должен состоять из трех светочувствительных элементов, соответственно красного, зеленого и синего цветов. Однако нa деле это не так. Каждый пиксель состоит только из одного элемента. Откуда же тогда берется цвет? Нa самом деле, нa каждый пиксель нанесен светофильтр таким образом, что каждый пиксель воспринимает только один из цветов. Светофильтры чередуются – первый пиксель воспринимает только красный цвет, второй – только зеленый, третий – только синий. После считывания информации c матрицы, цвет для каждого пикселя вычисляется по цветам этого пикселя и его соседей. Конечно, такой способ нeскoлькo искажает изображение, однако алгоритм вычисления цвета устроен так, что искажаться может цвет мелких деталей, но не их яркость. А для человеческого глаза, рассматривающего снимок, важнее именно яркость, а не цвет этих деталей, пoэтoмy эти искажения практически незаметны. Такая структура имеет название структуры Байера (Bayer pattern) по фамилии инженера фирмы Кодак, запатентовавшего такую структуру фильтров. Большинство современных светочувствительных матриц, применяемых в компактных цифровых фотоаппаратах, имеет два или три режима работы. Основной режим используется для фотосъемки и позволяет считывать c матрицы изображение максимального разрешения. Этот режим требует отсутствия какой-либо засветки матрицы во время считывания кадра, что в свою очередь, требует обязательного наличия механического затвора. Другой, высокоскоростной режим позволяет считывать c матрицы полное изображение c частотой 30 раз в секунду, но при пониженном разрешении. Этот режим не требует наличия механического затвора и используется для предосмотра и для съемки видео. Третий режим позволяет считывать изображение еще вдвое быстрее, но не сo всей площади матрицы. Этот режим используется для работы автофокуса. Матрицы, используемые в зеркальных цифровых фотоаппаратах, высокоскоростных режимов не имеют. Но не всe светочувствительные матрицы устроены именно так. Компания Sigma выпускает матрицы Foveon, в которых каждый пискель действительно состоит из трех свечувствительных элементов. Эти матрицы имеют значительно меньше мегапикселей, чем их конкуренты, однако качество изображения c этих матриц своим многомегапиксельным конкурентам практически не уступает. Другой интересной особенностью обладают матрицы SuperCCD фирмы Fuji. Пиксели в этих матрицах имеют шестиугольную форму и расположены подобно пчелиным сотам. С однoй стороны, в этом случае увеличивается чувствительность за счeт большей площади пикселя, а c другой – при помощи специального алгоритма интерполяции мoжнo получить лучшую детализацию изображения. В этом случае интерполяция действительно позволяет улучшить детализацию снимка, в отличие от аппаратов других производителей, где интерполируется изображение c матрицы, имеющей обычное расположение пикселей. Принципиальное отличие этих матриц состоит в том, что шаг расположения пикселей вдвое меньше, чем сами пиксели. Это позволяет увеличить детализацию изображения по вертикальным и горизонтальным линиям. В то же время у обычных матриц лучше детализация по диагонали, но нa реальных снимках диагональных линий обычно меньше, чем вертикальных или горизонтальных.Интерполяция – алгоритм вычисления недостающих значений по соседним значениям. Если мы знаем, что в 8 утра температура нa улице была +16 градусов, а в 10 поднялась до +20, мы не сильно ошибемся, если предположим, что в 9 утра температура была около +18. Матрица CCDВ CCD-сенсоре, свет (заряд), падающий нa пиксель сенсора, передается от микросхемы чeрeз один выходной узел, или чeрeз всeгo лишь нeскoлькo выходных узлов. Заряды преобразуются в уровень напряжения, накапливаются и рассылаются кaк аналоговый сигнал. Этот сигнал затем суммируется и преобразуется в числа аналого-цифровым преобразователем, вне сенсора (см. рис. 3). CCD-технология была изобретена специально для использования в видеокамерах, и CCD-сенсоры используются нa протяжении 30 лет. Традиционно, у CCD-сенсоров есть ряд преимуществ перед CMOS-сенсорами, а именно лучшая светочувствительность и низкий уровень шумов. В последнее время, однако, различия едва заметны. Недостатки CCD-сенсоров заключаются в том, что они являются аналоговыми компонентами, что требует наличия большего числа электроники «около» сенсора, они дороже в производстве и могут потреблять до 100 раз больше энергии, чем CMOS-сенсоры. Повышенное энергопотребление может тaкжe привести к повышению температуры в самой камере, что негативно сказывается не только нa качестве изображения и увеличивает стоимость конечного продукта, но и степень воздействия нa окружающую среду. CCD-сенсоры тaкжe требуют более скоростную передачу данных, т.к. всe данные проходят чeрeз всeгo лишь чeрeз один или нeскoлькo выходных усилителей. Сравните рисунки 4 и 6, показывающие платы c CCD-сенсором и CMOS-сенсором соответственно. Матрица CMOSНа ранней стадии, обычные CMOS-чипы использовались для отображения, однако качество картинки было низким, в связи c низкой световой чувствительностью КМОП-элементов. Современные CMOS-сенсоры изготавливаются по более специализированной технологии, что привело к стремительному росту качества изображения и светочувствительности за последние годы. CMOS-чипы обладают рядом преимуществ. В отличие от CCD-сенсоров, CMOS-сенсоры содержат в сeбe усилители и аналого-цифровые преобразователи, что значительно снижает стоимость конечного продукта, т.к. он уже содержит всe необходимые элементы для получения изображения. Каждый CMOS-пиксель содержит электронные преобразователи. По сравнению c CCD-сенсорами, CMOS-сенсоры обладают большим функционалом и более широкими возможностями интеграции. Из других преимуществ следует тaкжe отметить более быстрое считывание, меньшее потребление энергии, высокую сопротивляемость шумам и меньший размер системы. Тем не менее, наличие электронных схем внутри чипа приводит к риску появления более структурированного шума, например полос. Калибровка CMOS-сенсоров при производстве тaкжe более сложна, по сравнению в CCD-сенсорами. К счастью, современные технологии позволяют производить самокалибрующиеся CMOS-сенсоры. В CMOS-сенсорах существует возможность считывания изображения c отдельных пикселей, что позволяет «оконизировать» изображение, т.е. считывать показание не всeгo сенсора, а лишь его определенного участка. Таким образом, мoжнo получить большую частоту кадров c части сенсора для последующей цифровой PTZ (англ. pan/tilt/zoom, панорама/наклон/масштаб) обработки. Кроме того, это дает возможность передавать нeскoлькo видеопотоков c одного CMOS-сенсора, имитируя нeскoлькo «виртуальных камер» HDTV и мегапиксельные камерыМегапиксельные сенсоры и телевиденье высoкoй четкости позволяет цифровым IP-камерам обеспечивать более высокое разрешение изображения, чем аналоговые CCTV-камеры, т.е. они дают большую возможность различить детали и идентифицировать людей и объекты – ключевой фактор в видеонаблюдении. Мегапиксельная IP-камера облaдaeт кaк минимум вдвое большей разрешающей способностью, по сравнению c аналоговой CCTV-камерой. Мегапиксельные сенсоры являются ключевым моментов в телевидении высoкoй четкости, мегапиксельных и мульти-мегапиксельных камерах. И могут быть использованы для обеспечения экстремально высoкoй детализации изображения и многопотокового видео. Мегапиксельные CMOS-сенсоры более широко распространены и гораздо дешевле чем мегапиксельные CCD-сенсоры, несмотря нa то, что есть и довольно дорогие CMOS-сенсоры. Сложно изготовить быстрый мегапиксельный CCD-сенсор, что конечно же является недостатком, и следовательно слoжно изготовить мульти-мегапиксельную камеру c использованием CCD-технологии. Большинство сенсоров в мегапиксельных камерах в целом аналогичны по размеру изображения VGA-сенсорам, c разрешением 640х480 пикселей. Однако мегапиксельный сенсор содержит больше пикселей, чем VGA-сенсор, соответственно размер каждого пикселя в мегапиксельном сенсоре меньше размера пикселя в VGA-сенсоре. Следствием этого является меньшая светочувствительность каждого пикселя в мегапиксельном сенсоре. Так или иначе, прогресс не стоит нa месте. Идет стремительное развитие мегапиксельных сенсоров, и их светочувствительность постоянно возрастает. Основные отличия CMOS от CCDCMOS-сенсоры содержат в сeбe усилители, А/Ц-преобразователи и часто микросхемы дл дополнительной обработки, в то время кaк в камере c CCD-сенсором большинство функций по обработке сигнала проводятся за пределами сенсора. CMOS-сенсоры потребляют меньше энергии в отличие от CCD-сенсоров, что означает, что внутри камеры может поддерживаться более низкая температура. Повышенная температура CCD-сенсоров может увеличить интерференцию. С другой стороны CMOS-сенсоры могут страдать от структурированного шума (полосы и т.д.). CMOS-сенсоры поддерживают «оконизацию» изображения и многопотоковое видео, что невозможно в CCD-сенсорах. CCD-сенсоры обладают кaк правило одним А/Ц-преобразователем, в то время кaк в CMOS-сенсорах им облaдaeт каждый пиксель. Более быстрое считывание в CMOS-сенсорах позволяет их использовать при изготовлении мульти-мегапиксельных камер. Современные технологические достижения стирают разницу в светочувствительности между CCD- и CMOS-сенсорами. ЗаключениеCCD и CMOS-сенсоры обладают различными преимуществами и недостатками, но технологии стремительно развиваются и ситуация постоянно меняется. Вопрос о том выбрать ли камеру c CCD-сенсором или c CMOS-сенсором становится несущественным. Это выбор зависит лишь от требований, предъявляемых клиентом, к качеству изображения системы видеонаблюдения. |
CCD или CMOS? Что лучше?
В рубрику «Видеонаблюдение (CCTV)» | К списку рубрик | К списку авторов | К списку публикаций
Сенсор изображения является важнейшим элементом любой видеокамеры. Сегодня практически во всех камерах используются датчики изображения CCD или CMOS. Оба типа датчика выполняют задачу преобразования изображения, построенного на сенсоре объективом, в электрический сигнал. Однако вопрос, какой датчик лучше, до сих пор остается открытым
Н.И. Чура
Технический консультант
ООО «Микровидео Группа»
CCD является аналоговым датчиком, несмотря на дискретность светочувствительной структуры. Когда свет попадает на матрицу, в каждом пикселе накапливается заряд или пакет электронов, преобразуемый при считывании на нагрузке в напряжение видеосигнала, пропорциональное освещенности пикселей. Минимальное количество промежуточных переходов этого заряда и отсутствие активных устройств обеспечивают высокую идентичность чувствительных элементов CCD.
CMOS-матрица является цифровым устройством с активными чувствительными элементами (Active Pixel Sensor). С каждым пикселем работает свой усилитель, преобразующий заряд чувствительного элемента в напряжение. Это дает возможность практически индивидуально управлять каждым пикселем.
Эволюция CCD
С момента изобретения CCD лабораторией Белла (Bell Laboratories, или Bell Labs) в 1969 г. размеры сенсора изображения непрерывно уменьшались. Одновременно увеличивалось число чувствительных элементов. Это естественно вело к уменьшению размеров единичного чувствительного элемента (пикселя), а соответственно и его чувствительности. Например, с 1987 г. эти размеры сократились в 100 раз. Но благодаря новым технологиям чувствительность одного элемента (а следовательно, и всей матрицы) даже увеличилась.
Что позволило доминировать
С самого начала CCD стали доминирующими сенсорами, поскольку обеспечивали лучшее качество изображения, меньший шум, более высокую чувствительность и большую равномерность параметров пикселей. Основные усилия по совершенствованию технологии были направлены на улучшение характеристик CCD.
Как растет чувствительность
По сравнению с популярной матрицей Sony HAD стандартного разрешения (500х582) конца 1990-х гг. (ICX055) чувствительность моделей более совершенной технологии Super HAD выросла почти в 3 раза (ICX405) и Ex-view HAD – в 4 раза (ICX255). Причем для черно-белого и цветного варианта.
Для матриц высокого разрешения (752х582) успехи несколько менее впечатляющие, но если сопоставлять модели цветного изображения Super HAD с самыми современными технологиями Ex-view HAD II и Super HAD II, то рост чувствительности составит в 2,5 и 2,4 раза соответственно. И это несмотря на уменьшение размеров пикселя почти на 30%, поскольку речь идет о матрицах самого современного формата 960H с увеличенным количеством пикселей до 976х582 для стандарта PAL. Для обработки такого сигнала Sony предлагает ряд сигнальных процессоров Effio.
Добавилась ИК-составляющая
Одним из эффективных методов роста интегральной чувствительности является расширение спектральных характеристик чувствительности в область инфракрасного диапазона. Это особенно характерно для матрицы Ex-view. Добавление ИК-составляющей несколько искажает передачу относительной яркости цветов, но для черно-белого варианта это не критично. Единственная проблема возникает с цветопередачей в камерах «день/ночь» с постоянной ИК-чувствительностью, то есть без механического ИК-фильтра.
Развитие этой технологии в моделях Ex-view HAD II (ICX658AKA) в сравнении с предыдущим вариантом (ICX258AK) обеспечивает рост интегральной чувствительности всего на 0,8 дБ (с 1100 до 1200 мВ) с одновременным увеличением чувствительности на длине волны 950 нм на 4,5 дБ. На рис. 1 приведены характеристики спектральной чувствительности этих матриц, а на рис. 2 – отношение их интегральной чувствительности.
Оптические инновации
Другим методом роста чувствительности CCD являются увеличение эффективности пиксельных микролинз, светочувствительной области и оптимизация цветовых фильтров. На рис. 3 представлено устройство матриц Super HAD и Super HAD II, показывающее увеличение площади линзы и светочувствительной области последней модификации.
Дополнительно в матрицах Super HAD II значительно увеличено пропускание светофильтров и их устойчивость к выцветанию. Кроме того, расширено пропускание в коротковолновой области спектра (голубой), что улучшило цветопередачу и баланс белого.
На рис. 4 представлены спектральные характеристики чувствительности матриц Sony 1/3″ Super HAD (ICX229AK) и Super HAD II (ICX649AKA).
CCD: уникальная чувствительность
В совокупности перечисленных мер удалось добиться значительных результатов по улучшению характеристик CCD.
Сравнить характеристики современных моделей с более ранними вариантами не представляется возможным, поскольку тогда не производились цветные матрицы широкого применения даже типового высокого разрешения. В свою очередь, сейчас не производятся черно-белые матрицы стандартного разрешения по новейшим технологиям Ex-view HAD II и Super HAD II.
В любом случае по чувствительности CCD до сих пор являются пока недостижимым ориентиром для CMOS, поэтому они все еще широко используются за исключением мегапиксельных вариантов, которые очень дорого стоят и применяются в основном для специальных задач.
CMOS: достоинства и недостатки
Сенсоры CMOS были изобретены в конце 1970-х гг., но их производство удалось начать только в 1990-е по причине технологических проблем. И сразу наметились их основные достоинства и недостатки, которые и сейчас остаются актуальными.
К достоинствам можно отнести большую интеграцию и экономичность сенсора, более широкий динамический диапазон, простоту производства и меньшую стоимость, особенно мегапиксельных вариантов.
С другой стороны, CMOS-сенсоры обладают меньшей чувствительностью, обусловленной, при прочих равных условиях, большими потерями в фильтрах структуры RGB, меньшей полезной площадью светочувствительного элемента. В результате множества переходных элементов, включая усилители в тракте каждого пикселя, обеспечить равномерность параметров всех чувствительных элементов значительно сложнее в сравнении с CCD. Но совершенствование технологий позволило приблизить чувствительность CMOS к лучшим образцам CCD, особенно в мегапиксельных вариантах.
Ранние сторонники CMOS утверждали, что эти структуры будут гораздо дешевле, потому что могут быть произведены на том же оборудовании и по тем же технологиям, что и микросхемы памяти и логики. Во многом данное предположение подтвердилось, но не полностью, поскольку совершенствование технологии привело к практически идентичному по сложности производственному процессу, как и для CCD.
С расширением круга потребителей за рамки стандартного телевидения разрешение матриц стало непрерывно расти. Это бытовые видеокамеры, электронные фотоаппараты и камеры, встроенные в средства коммуникации. Кстати, для мобильных устройств вопрос экономичности довольно важный, и здесь у CMOS-сенсора нет конкурентов. Например, с середины 1990-х гг. разрешение матриц ежегодно вырастало на 1–2 млн элементов и теперь достигает 10–12 Мпкс. Причем спрос на CMOS-сенсоры стал доминирующим и сегодня превышает 100 млн единиц.
CMOS: улучшение чувствительности
Первые образцы камер наблюдения конца 1990-х – начала 2000-х с CMOS-матрицами имели разрешение 352х288 пкс и чувствительность даже для черно-белого варианта около 1 лк. Цветные варианты уже стандартного разрешения отличались чувствительностью около 7–10 лк.
Что предлагают поставщики
В настоящее время чувствительность CMOS-матриц, безусловно, выросла, но не превышает для типовых вариантов цветного изображения величины порядка нескольких люксов при разумных величинах F числа объектива (1,2– 1,4). Это подтверждают данные технических характеристик брендов IP-видеонаблюдения, в которых применяются CMOS-матрицы с прогрессивной разверткой. Те производители, которые заявляют чувствительность около десятых долей люкса, обычно уточняют, что это данные для меньшей частоты кадров, режима накопления или по крайней мере включенной и достаточно глубокой АРУ (AGC). Причем у некоторых производителей IP-камер максимальная АРУ достигает умопомрачительной величины –120 дБ (1 млн раз). Можно надеяться, что чувствительность для этого случая в представлении производителей предполагает пристойное отношение «сигнал/шум», позволяющее наблюдать не один только «снег» на экране.
Инновации улучшают качество видео
В стремлении улучшить характеристики CMOS-матриц компания Sony предложила ряд новых технологий, обеспечивающих практическое сравнение CMOS-матриц с CCD по чувствительности, отношению «сигнал/шум» в мегапиксельных вариантах.
Новая технология производства матриц Exmor основана на изменении направления падения светового потока на матрицу. В типовой архитектуре свет падает на фронтальную поверхность кремниевой пластины через и мимо проводников схемы матрицы. Свет рассеивается и перекрывается этими элементами. В новой модификации свет поступает на тыльную сторону кремниевой пластины. Это привело к существенному росту чувствительности и снижению шума CMOS-матрицы. На рис. 5 поясняется различие структур типовой матрицы и матрицы Exmor, показанных в разрезе.
На фото 1 приведены изображения тестового
объекта, полученные при освещенности 100 лк (F4.0 и 1/30 с) камерой с CCD (фронтальное освещение) и CMOS Exmor, имеющих одинаковый формат и разрешение 10 Мпкс. Очевидно, что изображение камеры с CMOS по крайней мере не хуже изображения с CCD.
Другим способом улучшения чувствительности CMOS-сенсоров является отказ от прямоугольного расположения пикселей с построчным сдвигом красного и синего элементов. При этом в построении одного элемента разрешения используются по два зеленых пикселя – синий и красный из разных строк. Взамен предлагается диагональное расположение элементов с использованием шести соседних зеленых элементов для построения одного элемента разрешения. Такая технология получила название ClearVid CMOS. Для обработки предполагается более мощный сигнальный процессор изображений. Различие структур расположения цветных элементов иллюстрируются рис. 6.
Считывание информации осуществляется быстродействующим параллельным аналого-цифровым преобразователем. При этом частота кадров прогрессивной развертки может достигать 180 и даже 240 кадр/с. При параллельном съеме информации устраняется диагональный сдвиг кадра, привычный для CMOS-камер с последовательным экспонированием и считыванием сигнала, так называемый эффект Rolling Shutter – когда полностью отсутствует характерный смаз быстро движущихся объектов.
На фото 2 приведены изображения вращающегося вентилятора, полученные CMOS-камерой с частотой кадров 45 и 180 кадр/с.
Полноценная конкуренция
В качестве примеров мы приводили технологии Sony. Естественно, CMOS-матрицы, как и CCD, производят и другие компании, хотя не в таких масштабах и не столь известные. В любом случае все так или иначе идут примерно одним путем и используют похожие технические решения.
В частности, известная технология матриц Panasonic Live-MOS также существенно улучшает характеристики CMOS-матриц и, естественно, похожими методами. В матрицах Panasonic уменьшено расстояние от фотодиода до микролинзы. Упрощена передача сигналов с поверхности фотодиода. Уменьшено количество управляющих сигналов с 3 (стандартные CMOS) до 2 (как в CCD), что увеличило фоточувствительную область пикселя. Применен малошумящий усилитель фотодиода. Используется более тонкая структура слоя датчиков. Сниженное напряжение питания уменьшает шум и нагрев матрицы.
Можно констатировать, что мегапиксельные матрицы CMOS уже могут успешно конкурировать с CCD не только по цене, но и по таким проблемным для этой технологии характеристикам, как чувствительность и уровень шума. Однако в традиционном CCTV телевизионных форматов CCD-матрицы остаются пока вне конкуренции.
Опубликовано: Журнал «Системы безопасности» #5, 2011
Посещений: 83715
Автор
| |||
В рубрику «Видеонаблюдение (CCTV)» | К списку рубрик | К списку авторов | К списку публикаций
Разбираемся в светочувствительных матрицах: CMOS и CCD
Светочувствительная матрица — это «глаз» вашей видеокамеры безопасности. Она захватывает свет, попавший в объектив видеокамеры безопасности, и преобразовывает его в электронный сигнал.
Формат, или размер, матрицы определяет охват ваших камер безопасности. Самыми популярными форматами являются следующие: 2/3″, 1/2″ и 1/3″.
- Матрица с диагональю 2/3″ позволяет вести видеонаблюдение на больших расстояниях в условиях очень низкой освещенности.
- Матрица с диагональю 1/2″ — в большинстве случаев, представляет собой оптимальное решение с приемлемой светочувствительностью.
- Матрица с диагональю 1/3″ обеспечивает хорошую производительность при низкой освещенности и высокой частоте кадров.
Самыми популярными типами матриц по применяемой технологии являются CMOS (КМОП-матрица) и CCD (ПЗС-матрица).
1. Видеокамеры наблюдения с КМОП-матрицей: за и против
КМОП (CMOS) означает комплементарный металл-оксид-полупроводник (Complementary Metal Oxide Semiconductor). В видеокамерах безопасности с матрицей CMOS используется технология прогрессивного сканирования.
Преимущества и недостатки видеокамеры наблюдения с CMOS-матрицей
Преимущества видеокамеры наблюдения с CMOS-матрицей
- Высокое разрешение
- Отличная цветопередача
- Высокая кадровая частота
- Низкое энергопотребление
- Экономическая эффективность
Недостатки видеокамеры наблюдения с CMOS-матрицей
- Высокий уровень шума
- Умеренная светочувствительность
2. Видеокамеры наблюдения с ПЗС-матрицей: за и против
Аббревиатура ПЗС (CCD) означает прибор с зарядовой связью (Charge Coupled Device). Видеокамеры наблюдения с ПЗС-матрицами имеют отличный WDR (широкий динамический диапазон), поэтому часто используются в условиях низкой освещенности. Камеры безопасности с матрицами CCD, как правило, менее подвержены влиянию вибраций по сравнению с камерами безопасности с матрицами CMOS.
Сильные и слабые стороны видеокамеры наблюдения с CCD-матрицей
Сильные стороны видеокамеры наблюдения с CCD-матрицей
- Хорошая производительность в условиях низкой освещенности
- Хорошая технология WDR
- Меньшая восприимчивость к вибрационному эффекту
- Низкий уровень шума
- Высокая чувствительность
- Высокое разрешение
Недостатки видеокамеры наблюдения с CCD-матрицей
- Высокое энергопотребление
- Низкая кадровая частота
- Дороговизна
CMOS или CCD — что лучше?
Раунд 1: Кадровая частота и потребляемая мощность
Камера безопасности с CMOS-датчиком является однозначным победителем по частоте кадров. Камера безопасности с CMOS-датчиком может напрямую преобразовывать фотоэлектрический сигнал в цифровой сигнал. Частота кадров и скорость процесса преобразования сигнала CMOS-датчиком гораздо больше по сравнению с CCD-датчиком.
Аналого-цифровое преобразование происходит за пределами CCD-датчиков, поэтому формирование изображений и видео происходит дольше. Кроме того, видеокамеры безопасности с датчиками изображения CCD часто страдают от проблемы перегрева.
Камеры видеонаблюдения с CMOS-датчиками поддерживают гораздо более высокую кадровую частоту и потребляют меньше энергии, а также более экономичны по сравнению с камерами безопасности с CCD-датчиками. Обычно цена камеры видеонаблюдения с CMOS-матрицей более приятная, чем цена камеры безопасности с CCD-матрицей.
Поэтому победителем первого раунда становится видеокамера с CMOS-матрицей!
Раунд 2: Качество изображения
Как правило, камеры безопасности с CCD-матрицей создают изображения с более высоким разрешением. Тем не менее, развитие технологий может поставить качество изображений CMOS на один уровень с CCD. Например, видеокамеры безопасности с CMOS датчиками и оптическим зумом могут создавать даже более четкие изображения, чем видеокамеры с матрицами CCD.
Итак, второй раунд — ничья!
Раунд 3: Светочувствительность и шум
Традиционно, ПЗС-датчики менее подвержены искажениям изображения и имеют более высокую светочувствительность, поэтому создают гораздо меньше шума, чем камеры безопасности с датчиками CMOS. Однако, в настоящее время, в плане чувствительности, камеры видеонаблюдения с матрицами CMOS иногда даже превосходят CCD видеокамеры.
Трудно сказать, кто станет победителем в категориях светочувствительности и шума. Однако, исходя из текущего уровня развития технологии и производительности, видеокамеры с матрицей CCD становятся победителями в третьем раунде (возможно, это временная победа).
Основываясь на приведенной выше информации и подробном сравнении двух типов датчиков, можно обнаружить, что каждый тип датчика имеет свои плюсы и минусы.
В этой битве не может быть одного победителя. Все сводится к конкретному случаю:
1. Вы можете выбрать камеры безопасности с CCD-датчиками, если их использование будет происходить в условиях низкой освещенности.
Примечание: Некоторые камеры безопасности с CMOS-матрицами также могут обеспечить отличное наблюдение в темное время суток.
2. Видеокамеры наблюдения с CMOS-датчиками могут быть более компактными, поскольку размеры самих CMOS-датчиков могут быть очень маленькими. Поэтому можете выбрать их, если не хотите привлекать внимания к своей системе наблюдения.
3. Выбирайте видеокамеры безопасности с CMOS-матрицей, если ваше интернет-подключение недостаточно качественное. Видеокамеры наблюдения с CMOS-матрицей имеют меньше требований к ширине полосы пропускания, поэтому не будут перегружать вашу сеть.
Источник reolink.com. Перевод статьи выполнила администратор сайта Елена Пономаренко.
Матрицы CCD и CMOS
1. Введение в датчики изображений
Когда изображение объективом видеокамеры, свет проходит через линзы и падает на датчик изображения. Датчик изображения, или матрица, состоит из множества элементов, также называемых пикселями, которые регистрируют количество света, упавшего на них. Полученное количество света пиксели преобразуют в соответствующее количество электронов. Чем больше света упадет на пиксель, тем больше электронов он сгенерирует. Электроны преобразуются в напряжение, а затем конвертируются в числа, согласно значениям АЦП (Аналого-Цифровой Преобразователь, A/D-converter). Сигнал, составленный из таких чисел, обрабатывается электронными цепями внутри видеокамеры.
В настоящее время, существует две основные технологии, которые могут быть использованы при создании датчика изображения в камере, это CCD (Charge-Coupled Device, ПЗС – прибор с зарядовой связью) и CMOS (Complimentary Metal-Oxide Semiconductor, КМОП – комплементарный металлооксидный полупроводник). Их характеристики, достоинства и недостатки будут рассмотрены в данной статье. На рисунке ниже изображены ПЗС (наверху) и КМОП (внизу) датчики изображений.
Цветовая фильтрация. Как уже было описано выше, датчики изображений регистрируют объем света, упавшего на них, от светлого до темного, но без цветовой информации. Поскольку КМОП и ПЗС датчики изображений «не видят цвет», перед каждым из датчиков ставится фильтр, позволяющий присвоить каждому пикселю в датчике цветовой тон. Два основных метода цветовой регистрации это RGB (Red-Greed-Blue, Красный-Зеленый-Синий) и CMYG (Cyan-Magenta-Yellow-Green, Голубой-Пурпурный-Желтый-Зеленый). Красный, зеленый и синий являются основными цветами, различные комбинации которых могут составить большинство цветов, воспринимаемых глазом человека.
Фильтр Байера (или массив Байера, англ. Bayer array), состоящий из сменяющих друг друга строк красно-зеленых и сине-зеленых фильтров, является наиболее распространенным RGB-цветовым фильтром (см. Рис. 2). Фильтр Байера содержит удвоенное количество зеленых «ячеек», т.к. человеческий глаз более чувствителен к зеленому цвету, а не красному или синему. Это также означает, что, при таком соотношении цветов в фильтре, человеческий глаз увидит больше деталей, чем если бы три цвета использовались в равной пропорции в фильтре.
Другой способ фильтровать (или регистрировать) цвет – использовать дополнительные цвета – голубой, пурпурный и желтый. Фильтр из дополнительных цветов обычно комбинируется с зеленым цветовым фильтром в форме CMYG-цветового фильтра (CMYG-color array), как показано на рисунке 2 (справа). CMYG-цветовой фильтр обычно предлагает более высокий сигнал пикселя, т.к. обладает более широкой спектральной полосой пропускания. Тем не менее, сигнал должен быть преобразован в RGB для использования в итоговом изображении, а это влечем за собой дополнительную обработку, и вносит шумы. Следствием этого является снижение отношения сигнал-шум, поэтому CMYG-системы, как правило, не столь хороши при передаче цветов.
CMYG-цветовой фильтр обычно используется в датчиках изображения с чересстрочной разверткой, в то время как RGB-системы в первую очередь используются в датчиках изображения с прогрессивной разверткой.
2. CCD-технология
В CCD-сенсоре, свет (заряд), падающий на пиксель сенсора, передается от микросхемы через один выходной узел, или через всего лишь несколько выходных узлов. Заряды преобразуются в уровень напряжения, накапливаются и рассылаются как аналоговый сигнал. Этот сигнал затем суммируется и преобразуется в числа аналого-цифровым преобразователем, вне сенсора (см. рис. 3).
CCD-технология была изобретена специально для использования в видеокамерах, и CCD-сенсоры используются на протяжении 30 лет. Традиционно, у CCD-сенсоров есть ряд преимуществ перед CMOS-сенсорами, а именно лучшая светочувствительность и низкий уровень шумов. В последнее время, однако, различия едва заметны.
Недостатки CCD-сенсоров заключаются в том, что они являются аналоговыми компонентами, что требует наличия большего числа электроники «около» сенсора, они дороже в производстве и могут потреблять до 100 раз больше энергии, чем CMOS-сенсоры. Повышенное энергопотребление может также привести к повышению температуры в самой камере, что негативно сказывается не только на качестве изображения и увеличивает стоимость конечного продукта, но и степень воздействия на окружающую среду.
CCD-сенсоры также требуют более скоростную передачу данных, т.к. все данные проходят через всего лишь через один или несколько выходных усилителей. Сравните рисунки 4 и 6, показывающие платы с CCD-сенсором и CMOS-сенсором соответственно.
3. CMOS-технология
На ранней стадии, обычные CMOS-чипы использовались для отображения, однако качество картинки было низким, в связи с низкой световой чувствительностью КМОП-элементов. Современные CMOS-сенсоры изготавливаются по более специализированной технологии, что привело к стремительному росту качества изображения и светочувствительности за последние годы.
CMOS-чипы обладают рядом преимуществ. В отличие от CCD-сенсоров, CMOS-сенсоры содержат в себе усилители и аналого-цифровые преобразователи, что значительно снижает стоимость конечного продукта, т.к. он уже содержит все необходимые элементы для получения изображения. Каждый CMOS-пиксель содержит электронные преобразователи. По сравнению с CCD-сенсорами, CMOS-сенсоры обладают большим функционалом и более широкими возможностями интеграции. Из других преимуществ следует также отметить более быстрое считывание, меньшее потребление энергии, высокую сопротивляемость шумам и меньший размер системы.
Тем не менее, наличие электронных схем внутри чипа приводит к риску появления более структурированного шума, например полос. Калибровка CMOS-сенсоров при производстве также более сложна, по сравнению в CCD-сенсорами. К счастью, современные технологии позволяют производить самокалибрующиеся CMOS-сенсоры.
В CMOS-сенсорах существует возможность считывания изображения с отдельных пикселей, что позволяет «оконизировать» изображение, т.е. считывать показание не всего сенсора, а лишь его определенного участка. Таким образом, можно получить большую частоту кадров с части сенсора для последующей цифровой PTZ (англ. pan/tilt/zoom, панорама/наклон/масштаб) обработки. Кроме того, это дает возможность передавать несколько видеопотоков с одного CMOS-сенсора, имитируя несколько «виртуальных камер»
4. HDTV и мегапиксельные камеры
Мегапиксельные сенсоры и телевиденье высокой четкости позволяет цифровым IP-камерам обеспечивать более высокое разрешение изображения, чем аналоговые CCTV-камеры, т.е. они дают большую возможность различить детали и идентифицировать людей и объекты – ключевой фактор в видеонаблюдении. Мегапиксельная IP-камера обладает как минимум вдвое большей разрешающей способностью, по сравнению с аналоговой CCTV-камерой. Мегапиксельные сенсоры являются ключевым моментов в телевидении высокой четкости, мегапиксельных и мульти-мегапиксельных камерах. И могут быть использованы для обеспечения экстремально высокой детализации изображения и многопотокового видео.
Мегапиксельные CMOS-сенсоры более широко распространены и гораздо дешевле чем мегапиксельные CCD-сенсоры, несмотря на то, что есть и довольно дорогие CMOS-сенсоры.
Сложно изготовить быстрый мегапиксельный CCD-сенсор, что конечно же является недостатком, и следовательно сложно изготовить мульти-мегапиксельную камеру с использованием CCD-технологии.
Большинство сенсоров в мегапиксельных камерах в целом аналогичны по размеру изображения VGA-сенсорам, с разрешением 640х480 пикселей. Однако мегапиксельный сенсор содержит больше пикселей, чем VGA-сенсор, соответственно размер каждого пикселя в мегапиксельном сенсоре меньше размера пикселя в VGA-сенсоре. Следствием этого является меньшая светочувствительность каждого пикселя в мегапиксельном сенсоре.
Так или иначе, прогресс не стоит на месте. Идет стремительное развитие мегапиксельных сенсоров, и их светочувствительность постоянно возрастает.
5. Основные отличия
CMOS-сенсоры содержат в себе усилители, А/Ц-преобразователи и часто микросхемы дл дополнительной обработки, в то время как в камере с CCD-сенсором большинство функций по обработке сигнала проводятся за пределами сенсора. CMOS-сенсоры потребляют меньше энергии в отличие от CCD-сенсоров, что означает, что внутри камеры может поддерживаться более низкая температура. Повышенная температура CCD-сенсоров может увеличить интерференцию. С другой стороны CMOS-сенсоры могут страдать от структурированного шума (полосы и т.д.).
CMOS-сенсоры поддерживают «оконизацию» изображения и многопотоковое видео, что невозможно в CCD-сенсорах. CCD-сенсоры обладают как правило одним А/Ц-преобразователем, в то время как в CMOS-сенсорах им обладает каждый пиксель. Более быстрое считывание в CMOS-сенсорах позволяет их использовать при изготовлении мульти-мегапиксельных камер.
Современные технологические достижения стирают разницу в светочувствительности между CCD- и CMOS-сенсорами.
6. Заключение
CCD и CMOS-сенсоры обладают различными преимуществами и недостатками, но технологии стремительно развиваются и ситуация постоянно меняется. Вопрос о том выбрать ли камеру с CCD-сенсором или с CMOS-сенсором становится несущественным. Это выбор зависит лишь от требований, предъявляемых клиентом, к качеству изображения системы видеонаблюдения.
Полное руководство по датчикам изображения CMOS VS CCD для камер видеонаблюдения — блог Reolink
Камера видеонаблюдения CMOS и датчики изображения CCD, что лучше? В чем разница между датчиками изображения CCD и CMOS на камерах безопасности?
У вас может возникнуть много вопросов, когда речь идет о датчике изображения IP-камеры безопасности. Вы можете проверить это полное руководство для камеры видеонаблюдения CMOS VS CCD ниже, чтобы решить свои головоломки.
№1. Что такое датчик изображения камеры безопасности
# 2.Камера видеонаблюдения CMOS VS CCD датчики изображения
# 3. Бонусные советы, которые нельзя пропустить
№1. База знаний по датчику изображения камеры видеонаблюдения IP
Датчик изображения — это «глаз» ваших IP-камер безопасности. Датчик изображения камеры безопасности может улавливать свет, попадающий в объектив камеры безопасности, и преобразовывать его в электронный сигнал. Таким образом, вы можете видеть изображения / видео при доступе к своим IP-камерам безопасности.
FYI : проверьте детали объектива камеры безопасности в этом полезном руководстве по выбору объектива камеры безопасности.
Как вы могли заметить в части спецификации вашей IP-камеры безопасности, вы можете найти датчик изображения 1/3 ″ 4-мегапиксельной CMOS (или что-то еще). Так что это значит?
Что такое КМОП с прогрессивной разверткой 1/3? Тип сенсора 1/3 VS 1 / 2,8, какой лучше?
Значение является мерой формата датчика изображения камеры наблюдения. Формат датчика изображения — это форма и размер датчика изображения, который определяет угол обзора ваших камер наблюдения.На рынке представлены 3 популярных формата датчиков изображения для камер видеонаблюдения: 2/3 «, 1/2» и 1/3 «.
- Датчик изображения камеры видеонаблюдения 2/3 « — обеспечивает нацеливание на большие расстояния в условиях очень низкой освещенности.
- Датчик изображения камеры видеонаблюдения 1/2 дюйма — идеальное место для многих камер видеонаблюдения с приемлемой чувствительностью.
- Датчик изображения камеры видеонаблюдения 1/3 « — обеспечивает хорошую производительность при слабом освещении и высокую частоту кадров.
На рынке есть 2 самых популярных датчика изображения для камер видеонаблюдения: CMOS и CCD.Вы можете проверить все подробности о датчиках изображения CMOS и CCD камеры видеонаблюдения ниже.
1. CMOS камера видеонаблюдения за и против
CMOS означает комплементарный металл-оксид-полупроводник. КМОП-камеры и системы видеонаблюдения используют дополнительные и симметричные пары металлооксидных полупроводниковых полевых транзисторов p-типа и n-типа для логических функций.
Технология прогрессивной развертки изображения широко используется в камерах видеонаблюдения CMOS. Этот вид технологии сканирования изображений позволяет камерам видеонаблюдения CMOS получать значения от каждого пикселя и затем сканировать их.
CMOS камера видеонаблюдения Преимущества и недостатки
Преимущества
- Высокое разрешение
- Отличный цвет
- Высокая частота кадров
- Низкое энергопотребление
- Экономичный
Недостатки :
- Высокий уровень шума
- Умеренная чувствительность
2. Плюсы и минусы камеры видеонаблюдения CCD
CCD — устройство с заряженной связью.В камере (системе) видеонаблюдения ПЗС пиксели представлены металлооксидно-полупроводниковыми конденсаторами, легированными p-примесью.
IP-камеры безопасностиCCD имеют отличный WDR (широкий динамический диапазон), поэтому камеры безопасности с этим типом датчиков изображения отлично работают в условиях низкой освещенности.
Камеры безопасностиCCD обычно менее подвержены проблемам с желе или вибрацией по сравнению с камерами безопасности CMOS, поскольку камеры безопасности CMOS используют «скользящий затвор» — это означает, что камера безопасности открыта сверху вниз.
С другой стороны, камеры видеонаблюдения с ПЗС-матрицейиспользуют «глобальный затвор», что означает, что он мгновенно открывает весь датчик. Таким образом, камеры видеонаблюдения CCD менее восприимчивы к желе или вибрации.
Сильные и слабые стороны камеры видеонаблюдения CCD
Сильные стороны :
- Хорошая работа в условиях низкой освещенности
- Хорошо WDR
- Меньше подвержены вибрации
- Низкий уровень шума
- Высокая чувствительность
- Высокое разрешение
Слабые стороны :
- Высокое энергопотребление
- Низкая частота кадров
- Дорого
Если вы хотите купить камеру безопасности с хорошим датчиком изображения для четких изображений / видео, вы никогда не должны пропустить сравнение CMOS камеры безопасности и датчика изображения CCD ниже.
№ 2. Датчик изображения камеры безопасности CMOS VS CCD — Какой лучший
CMOS VS CCD-датчик изображения для камеры безопасности , какой из них лучше? Датчик изображения камеры наблюдения CCD VS CMOS, в чем разница?
Тонны вопросов о камерах наблюдения CMOS VS CCD могут поглотить вас, как наводнения. Это действительно неприятно, правда? Неважно, сделай глубокий вдох. Вы получите все необходимое о датчиках изображения CMOS и CCD для камеры видеонаблюдения после того, как прочтете сравнение CMOS и CCD-датчика изображения ниже.
Раунд 1: сравнение частоты кадров и мощности
Раунд 2: сравнение качества изображения
Раунд 3: сравнение чувствительности и шума
Раунд 1: CMOS камеры видеонаблюдения и датчик изображения CCD, частота кадров и энергопотребление
Датчик изображения CMOS камеры видеонаблюдения— настоящий победитель по частоте кадров. Датчик изображения CMOS камеры видеонаблюдения может напрямую преобразовывать фотоэлектрический сигнал в цифровой сигнал. Частота кадров и скорость обработки чрезвычайно высоки по сравнению с датчиками изображения CCD.
При использовании датчиков изображения CCD-камеры видеонаблюдения обработка или преобразование ключей, например аналого-цифровое преобразование, происходит вне датчиков, поэтому датчикам изображения CCD камеры видеонаблюдения требуется больше времени для формирования изображений / видео.
Камера видеонаблюдения КМОП-датчики изображения могут объединять различные типы приложений на одном универсальном чипе. Датчики изображения CMOS в камерах безопасности обычно требуют меньшей полосы пропускания.
С другой стороны, датчики изображения CCD камеры видеонаблюдениятребуют как внутренних схем, так и внешних элементов для усиления и преобразования в цифровой сигнал.Это основная причина, по которой камеры безопасности с датчиками изображения CCD часто страдают от перегрева.
Одним словом, камеры видеонаблюдения с CMOS-датчиками изображения предлагают гораздо более точное время кадра и потребляют меньше энергии, а также более экономичны по сравнению с камерами безопасности с датчиками изображения CCD. Обычно цена камеры видеонаблюдения CMOS будет более выгодной, чем IP-камеры безопасности CCD.
Победитель 1-го тура — камеры видеонаблюдения с CMOS-сенсорами изображения!
Раунд 2: сравнение КМОП и ПЗС датчика изображения камеры наблюдения по качеству изображения
Камеры видеонаблюдения с датчиками изображения CCD, как правило, предлагают изображения, фотографии или видео с гораздо более высоким разрешением.
Тем не менее, с развитием технологии в камерах видеонаблюдения CMOS-сенсоры изображения, качество изображения CMOS-сенсоров может быть на одном уровне с сенсорами изображения CCD в IP-камерах видеонаблюдения CCTV.
Например, камеры видеонаблюдения с CMOS-датчиками изображения и оптическим зумом могут предлагать даже более четкие изображения / видео, чем датчики изображения CCD.
Reolink RLC-422WДвухдиапазонная антивандальная камера безопасности с WiFi
5-мегапиксельная Super HD; 2.Двухдиапазонный Wi-Fi 4/5 ГГц; IK10 вандалозащищенный; 4-кратный оптический зум; Наружная / внутренняя защита; Встроенный слот для SD-карты.
Датчик изображения CMOS VS CCD камеры наблюдения во 2-м раунде — Галстук!
Раунд 3: Камеры видеонаблюдения CMOS VS CCD Датчик изображения при слабом освещении (ИК), чувствительность и шум
ПЗС-сенсорыв камерах видеонаблюдения перемещают свои заряженные ячейки по чипу, поэтому они менее подвержены искажению изображения. Таким образом, датчики изображения CCD в камерах безопасности, как правило, имеют более высокую спектральную чувствительность к свету и производят гораздо меньше шума, чем камеры безопасности CMOS.
QE (квантовая эффективность) — это мера того, насколько эффективно CMOS и CCD-датчик изображения камеры видеонаблюдения преобразует свет (фотоны) в цифровой сигнал (электроны). Чем больше электронов в пикселе в течение периода интеграции датчика изображения камеры наблюдения, тем более чувствительным является датчик.
Уровень шума считывания (RN) является мерой шума датчика изображения камеры наблюдения. Чем выше уровень шума чтения, тем чувствительнее датчик изображения камеры наблюдения.
Камеры видеонаблюденияCCD предлагали лучшие характеристики при слабом освещении или ночном видении, особенно при более высоких температурах несколько лет назад.В настоящее время камеры безопасности CMOS иногда даже превосходят камеры безопасности CCD CCTV IP по чувствительности.
Трудно сказать, кто станет настоящим победителем при сравнении камер видеонаблюдения CMOS и CCD по чувствительности и шуму. Однако, исходя из современной технологии и общей производительности, камеры видеонаблюдения CCD являются победителем в третьем раунде (возможно, это будет временная победа).
Вы можете проверить приведенную ниже таблицу сравнения датчиков изображения камеры видеонаблюдения CMOS VS CCD, чтобы получить общее впечатление.
Элемент | КМОП | ПЗС |
Сигнал вне пикселя | Напряжение | Электронный пакет |
Сигнал вне микросхемы | бит (цифровой) | Напряжение (аналог) |
Сигнал вне камеры | бит (цифровой) | бит (цифровой) |
Производительность | ||
Чувствительность | Умеренная | Высокая |
Разрешение | Высокая | Высокая |
Потребляемая мощность | Низкая | Высокая |
Шум | Умеренная | Низкая |
Стоимость | Низкая | Высокая |
№ 3.Бонус: когда следует выбирать камеры безопасности с датчиками изображения CMOS или CCD
Основываясь на приведенной выше информации о датчиках изображения камеры видеонаблюдения CMOS и CCD и подробном сравнении двух типов датчиков изображения, вы можете обнаружить, что каждый тип датчика изображения камеры безопасности имеет свои плюсы и минусы.
В реальной операции в этой битве не будет однозначного победителя. Это сводится к вашему конкретному применению с вашими камерами и системами безопасности.
1. Вы можете выбрать камеры слежения с датчиками изображения CCD, если хотите установить камеры слежения в темноте.
Bump: Некоторые камеры видеонаблюдения CMOSS, такие как Reolink RLC-423, также могут обеспечивать отличное расстояние ночного видения.
(Дополнительная литература: камеры наблюдения ночного видения)
2. Используйте камеры видеонаблюдения CMOS в скрытых помещениях. Камеры видеонаблюдения с датчиками изображения CMOS могут быть компактными, поскольку размер датчиков изображения CMOS может быть очень маленьким.Однако камеры безопасности CCD ограничены периферией сложных схем. Если вам нужно установить камеры видеонаблюдения в местах, уязвимых для вандализма, попробуйте антивандальную камеру безопасности с датчиком изображения CMOS.
Горячей Reolink RLC-422Антивандальная камера видеонаблюдения с поддержкой PoE
5 МП Super HD; IK10 вандалозащищенный; 4-кратный оптический зум; Наружная / внутренняя защита; 100-футовое инфракрасное ночное видение; Удаленный просмотр в реальном времени и управление.
3. Выбирайте камеры видеонаблюдения CMOS, если у вас недостаточно Интернет. Камеры видеонаблюдения с CMOS-датчиками изображения обеспечивают высокую частоту кадров, что не требует слишком большого использования полосы пропускания. Таким образом вы не пострадаете от потери Интернета.
.CMOS камера
Большинство владельцев цифровых фотоаппаратов или устройств, в которых есть цифровые фотоаппараты. По мере того, как эти камеры становятся меньше и дешевле, мы видим их все больше и больше. Но задумывались ли вы, что заставляет вашу цифровую камеру работать? Вы когда-нибудь задумывались о процессах и методах, которые ваша камера использует для преобразования света в цифровой сигнал? В этой статье мы рассмотрим особый тип устройства, называемого датчиком CMOS, как он работает, а также популярные цифровые камеры на рынке, которые используют датчики CMOS для захвата изображений.
Что такое CMOS-камера
CMOS, или дополнительный металл-оксидный полупроводник, камеры — это камеры, в которых используется специальный тип устройства, называемый датчиком CMOS, который преобразует свет в электроны. CMOS-камеры — это тип цифровых фотоаппаратов, которые новее и лучше, чем CCD (устройство с зарядовой связью). Из-за того, как работают датчики CMOS, они могут быть меньше и дешевле в сборке, чем цифровые камеры CCD. Практически все цифровые камеры, которые мы используем, основаны на датчиках CMOS, а также в веб-камерах и камерах вашего телефона.
Как это работает
Там, где датчики CCD принимают свет, преобразуют его в электроны, а затем переносят электроны через чип в определенную область для обработки, датчики CMOS могут обрабатывать электроны в том же месте, где они получают свет. Это делает камеры CMOS быстрее и меньше, но изображения, сделанные камерой CMOS, часто темнее, чем изображения, сделанные камерой CCD, потому что CMOS имеет так много транзисторов, что блокирует попадание большого количества света на фотодиод, на котором обрабатывается изображение.
Популярные камеры CMOS Камеры CMOS
довольно легко найти, поскольку большинство цифровых камер включают в себя датчики CMOS. Тем не менее, мы составили краткий список CMOS-камер, которые могут вам пригодиться в ваших живописных приключениях. Обзор этих камер также поможет вам понять, что такое CMOS-камера.
Погодостойкий ультратонкий Q-See
Погодостойкий ультратонкий корпус Q-See можно использовать как внутри, так и снаружи, и он имеет встроенную систему крепления для легкой сборки.Эта камера имеет ряд приложений, так как ее можно использовать как простую настольную камеру для сетевых нужд, камеру на приборной панели, которая используется в полицейских машинах и других машинах скорой помощи, или даже в качестве камеры безопасности, устанавливаемой на крыше. Независимо от того, для чего вы его используете, знайте, что ваша камера водонепроницаема, устойчива к ударам и может выдержать падения с высоты нескольких этажей.
Внутренняя цветная CMOS-камера Q-See
Внутренняя цветная CMOS-камера Q-See оснащена функциями ночного видения и встроенным микрофоном, что делает ее идеальной для наблюдения за офисом во время вашего отсутствия или просто для просмотра вебкамера.Камера может стоять сама по себе или ее можно закрепить на стене, столе или мониторе. В комплект входит 60-футовый кабель, который позволяет устанавливать его практически в любом месте, и его можно подключить к компьютеру, видеомагнитофону или DVD-плееру для записи.
Беспроводная сетевая камера LevelOne WCS-0020 P / T / Z (CMOS)
Беспроводная сетевая камера LevelOne WCS-0020 P / T / Z — это, прежде всего, система наблюдения, но ее можно легко использовать в качестве веб-камеры также. Камера является беспроводной, что позволяет устанавливать ее практически в любом месте: на столе, на шкафу или на телевизоре.Он также стоит сам по себе, но может быть установлен с помощью подходящего оборудования. LevelOne WCS-0020 оснащен небольшим двигателем, который позволяет ему наклоняться вперед и назад и перемещаться из стороны в сторону, чтобы уловить движение. Он также поставляется с клиентом удаленного просмотра, который позволяет вам видеть то, что видит ваша камера, с вашего компьютера или мобильного телефона.
КМОП-камера Toshiba TCM8240MD — 1300 × 1040 пикселей
КМОП-камера Toshiba TCM8240MD — это очень маленькая и очень мощная цифровая камера, которая обычно уже устанавливается в ваши продукты Toshiba, если в этих продуктах есть камера.В противном случае вы можете без особых усилий добавить камеру к существующему компьютеру. При разрешении 1,3 мегапикселя камера имеет такую же цветопередачу, как ваш iPod или цифровая камера. Камера автоматически настраивается на движение и яркость. Сама камера меньше четверти, и ее нужно просто закрепить на поверхности (например, на передней панели монитора вашего компьютера), приклеив ее или прикрепив липучками к плоской поверхности по вашему выбору.
CCD и CMOS: беспленочные камеры
Вместо пленки в цифровой камере есть датчик, преобразующий свет в электрические заряды.
В большинстве цифровых камер используется датчик изображения с зарядовой связью (ПЗС). В некоторых камерах используется технология комплементарного металлооксидного полупроводника (CMOS) . Датчики изображения CCD и CMOS преобразуют свет в электроны. Если вы читали «Как работают солнечные элементы», то уже знакомы с одной из технологий, используемых для преобразования.Упрощенный способ представить себе эти датчики — представить двумерный массив из тысяч или миллионов крошечных солнечных элементов.
Объявление
Как только датчик преобразует свет в электроны, он считывает значение (накопленный заряд) каждой ячейки на изображении. Вот где проявляются различия между двумя основными типами датчиков:
- ПЗС переносит заряд по микросхеме и считывает его в одном углу массива.Аналого-цифровой преобразователь (АЦП) затем преобразует значение каждого пикселя в цифровое значение, измеряя количество заряда на каждом фотоэлементе и преобразовывая это измерение в двоичную форму.
- КМОП-устройства используют несколько транзисторов в каждом пикселе для усиления и перемещения заряда с помощью более традиционных проводов.
Различия между двумя типами датчиков приводят к ряду плюсов и минусов:
- ПЗС-сенсоры создают высококачественные изображения с низким уровнем шума.КМОП-сенсоры обычно более чувствительны к шумам.
- Поскольку каждый пиксель на датчике CMOS имеет несколько транзисторов, расположенных рядом с ним, светочувствительность кристалла CMOS ниже. Многие фотоны попадают на транзисторы, а не на фотодиод.
- КМОП-сенсоры традиционно потребляют мало энергии. ПЗС-матрицы, с другой стороны, используют процесс, который потребляет много энергии. ПЗС-матрицы потребляют в 100 раз больше энергии, чем эквивалентные КМОП-матрицы.
- ПЗС-сенсоры производятся серийно в течение более длительного периода времени, поэтому они более зрелые.У них, как правило, пиксели более высокого качества и их больше.
Хотя между двумя датчиками существует множество различий, они оба играют одинаковую роль в камере — они превращают свет в электричество. Чтобы понять, как работает цифровая камера, вы можете думать о них как о почти идентичных устройствах.
.Binnning: различия между CMOS и CCD
С выпуском Atik Horizon, нашей первой камеры CMOS, самое время взглянуть на различия между технологиями CMOS и CCD. Одна область, в которой они различаются, — это то, как они обрабатывают биннинг. В этой статье будут затронуты основные различия между CMOS и CCD binning и объяснены их последствия.
Так что же такое биннинг?
По сути, как в ПЗС, так и в КМОП, «биннинг» — это метод объединения пикселей изображения в «суперпиксель».Обычно это происходит в блоках 2 × 2 или 3 × 3 и т.д. При этом сигнал в отдельных пикселях объединяется в суперпиксель. Это помогает улучшить отношение сигнал / шум (SNR). Однако это также снижает разрешение вашего изображения, поскольку оно содержит меньше, но больше пикселей. Отличие CMOS в том, что этот процесс происходит в программном обеспечении после завершения оцифровки пикселей. Это сильно отличается от CCD, где биннинг выполняется аппаратно или «на кристалле».
Чтобы помочь визуализировать этот процесс, ниже у нас есть 4 пикселя (синие), и каждый пиксель содержит один электрон (красный).
При объединении пикселей мы складываем их значения, чтобы создать один пиксель, содержащий все 4 электрона.
Итак, это биннинг 2 × 2 объясняется довольно просто. Чтобы прояснить ситуацию, ниже приведен пример того, как биннинг 2 × 2 будет иметь место с 16 пикселями. Они становятся 4 суперпикселями, сохраняя при этом такое же количество электронов, как и их несвязанные аналоги.
Подводя итог, что такое биннинг:
- Объединение соседних пикселей, чаще всего в квадратной сетке (2 × 2, 3 × 3, 4 × 4)
- Пиксели объединяются в «суперпиксель»
- Binning улучшает SNR, но за счет разрешения
- Объединение CMOS происходит программно, после оцифровки
- Объединение ПЗС-матриц происходит «на кристалле» до оцифровки.
Чем отличаются биннинг CMOS и CCD?
Одна из основных причин биннинга — обнаружение слабых сигналов.Предел обнаружения часто определяется как точка, в которой отношение сигнал / шум равно единице, что означает, что сигнал равен шуму. В случае слабых сигналов шум — это просто шум считывания камеры. Итак, если мы возьмем шум чтения 3 электронов (e-) и сигнал 3e-, у нас будет SNR 1, и объект будет практически обнаруживаемым.
ТехнологияCCD позволяет комбинировать пиксели в аналоговой области до того, как они будут считаны с датчика. Итак, если взять вышеприведенный пример с суперпикселем 2 × 2, он будет иметь сигнал от всех 4 отдельных пикселей; 4x3e- = 12e-.Поскольку мы читаем только суперпиксель, когда у нас остается только 3e- шума чтения. Таким образом, отношение SNR теперь 12/3 = 4. Другими словами, в 4 раза лучше.
ТехнологияCMOS отличается тем, что пиксели не могут быть объединены в суперпиксель до того, как они будут считаны. Что мы можем сделать, так это математически скомбинировать пиксели после считывания на компьютере. Каждый суперпиксель снова получает значения сигнала от своих предыдущих отдельных пикселей, но поскольку это происходит после того, как пиксели были считаны, также увеличивается шум чтения.Однако шум чтения увеличивается медленнее, чем сигнал, что дает нам улучшенное отношение сигнал / шум. Давайте посмотрим на математику, стоящую за этим.
Оставаясь с приведенным выше примером, сигнал снова будет 4x3e- = 12e-. Тем не менее, отдельные пиксели уже оцифрованы, и каждый из них имеет шум чтения 3 раз. Как упоминалось ранее, шум в изображении не накапливается как обычное добавление, а подчиняется статистическому распределению как квадратный корень из числа добавленных пикселей. Итак, в этом случае шум нашего супер пикселя CMOS, это 3e-x4 / sqr4 = 6e-.Итак, теперь наше отношение сигнал / шум составляет 12/6 = 2, что вдвое лучше, чем без биннинга, но не так хорошо, как с технологией CCD. По мере увеличения количества бинов, 3 × 3, 4 × 4 и т. Д., Разница между характеристиками сигнал / шум в CCD и CMOS также увеличивается.
Подведем итоги
CCD binning — очень мощный метод, позволяющий повысить чувствительность за счет разрешения. У этого есть ряд приложений:
- Короткие выдержки, чтобы определить, находится ли объект в центре изображения
- Захват данных RGB в изображениях LRGB
- Согласование камеры с телескопом с большим фокусным расстоянием
- Направляющая
- Отображение слабых объектов
Биннинг менее эффективен в камерах CMOS.Шум чтения CMOS-сенсора будет, как правило, ниже, чем CCD, что помогает с более низкими уровнями биннинга, но тот факт, что он включает в себя шум чтения каждого отдельного пикселя, действительно складывается по мере увеличения количества пикселей, которые вы объединяете вместе. Другие методы обработки, такие как уменьшение шума, изменение размера и повторная выборка, могут быть лучше при извлечении наилучшего сигнала из данных CMOS.
Вернуться к новостям
.